metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetra-*µ*-acetato-bis[(benzofuro[3,2-c]pyridine)copper(II)]

Viktor Vrábel,^a* Ľubomír Švorc,^a Nadežda Juristová,^b Jozef Miklovič^b and Jozef Kožíšek^c

^aDepartment of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, ^bDepartment of Chemistry, Faculty of Natural Sciences, University of St Cyril and Methodius, SK-917 01 Trnava, Slovak Republic, and ^cDepartment of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic Correspondence e-mail: viktor.vrabel@stuba.sk

Received 28 June 2007; accepted 2 July 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.034; wR factor = 0.103; data-to-parameter ratio = 15.8.

The title compound, $[Cu_2(C_2H_3O_2)_4(C_{11}H_7NO)_2]$, has a centrosymmetric dinuclear structure in which two symmetryrelated Cu^{II} centres are bridged by four acetate groups, with a Cu...Cu separation of 2.6330 (6) Å. Each Cu^{II} centre is fivecoordinated in a distorted square-pyramidal coordination geometry by four O atoms from four bridging acetate groups in the basal plane and the N atom of a benzofuropyridine ligand in the apical position. Each Cu^{II} atom is displaced from the basal plane by 0.2064 (3) Å towards the apical N atom. In the crystal structure, the complexes are linked by $C-H \cdots O$ interactions to form zigzag layers.

Related literature

For related literature, see: Baran et al. (2005); Bencková & Krutošíková (1995, 1999); Berners-Price et al. (1987); Bobošík et al. (1995); Comba et al. (1999); Cox et al. (2000); Francesca et al. (2005); Miklovič et al. (2004); Moncol et al. (2007); Musie et al. (2006); Nikhil et al. (2001); Su et al. (2006).

Experimental

Crystal data

 $[Cu_2(C_2H_3O_2)_4(C_{11}H_7NO)_2]$ $M_r = 701.60$ Orthorhombic, Pbca a = 13.6706 (2) Å b = 8.2336(1) Å c = 27.7541 (4) Å

Data collection

Oxford Diffraction Gemini R CCD
diffractometer
Absorption correction: analytical
(Clark & Reid, 1995)
$T_{\rm min} = 0.542, T_{\rm max} = 0.785$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	201 parameters
$wR(F^2) = 0.103$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
3185 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

V = 3123.95 (7) Å³

Mo $K\alpha$ radiation

 $0.42 \times 0.29 \times 0.17 \text{ mm}$

65563 measured reflections 3185 independent reflections

2574 reflections with $I > 2\sigma(I)$

 $\mu = 1.42 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int}=0.029$

Z = 4

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).

The authors thank the Grant Agency of the Ministry of Education of the Slovak Republic (grant Nos. 1/3584/06 and 1/ 2449/05), and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2409).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Baran, P., Boča, M., Boča, R., Krutošíková, A., Miklovič, J., Pelikán, J. & Titiš, J. (2005). Polyhedron, 24, 1510-1516.
- Bencková, M. & Krutošíková, A. (1995). Monatsh. Chem. 126, 753-758.
- Bencková, M. & Krutošíková, A. (1999). Collect. Czech. Chem. Commun. 64, 539-547.
- Berners-Price, S. J., Johnson, R. K., Mirabelli, C. K., Faucette, L. F., McCabe, F. L. & Sadler, P. J. (1987). Inorg. Chem. 26, 3383-3387.
- Bobošík, V., Krutošíková, A. & Jordis, U. (1995). Monatsh. Chem. 126, 749-753
- Brandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Comba, P., Katsichtis, C., Nuber, B. & Pritzkow, H. (1999). Eur. J. Inorg. Chem. pp. 777-783.
- Cox, P. J., Aslanidis, P. & Karagiannidis, P. (2000). Polyhedron, 19, 1615-1620. Francesca, G., Renata, F. G., Maurizio, L., Luciano, M., Giuseppe, M., Maria,
- A., Pellinghelli, S. T. & Matteo, T. (2005). J. Inorg. Biochem. 99, 1573-1584. Miklovič, J., Krutošíková, A. & Baran, P. (2004). Acta Cryst. C60, m227-m230.
- Moncol, J., Maroszova, J., Melník, M. & Koman, M. (2007). Acta Cryst. C63, m114-m116.
- Musie, G. T., Li, X.-B. & Klausmeyer, K. K. (2006). Acta Cryst. E62, m1966m1968.

- Nikhil, H. G., Subhash, B. P., Dan, R., David, B., Philip, L., Carl, S. & Chris, N. (2001). *Inorg. Chem. Commun.* 4, 26–29.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Su, H., Huang, Y.-S., Wen, Y.-H. & Feng, Y.-L. (2006). Acta Cryst. E62, m1071– m1073.

supplementary materials

Acta Cryst. (2007). E63, m2112-m2113 [doi:10.1107/S1600536807032242]

Tetra-*µ*-acetato-bis[(benzofuro[3,2-c]pyridine)copper(II)]

V. Vrábel, L. Svorc, N. Juristová, J. Miklovic and J. Kozísek

Comment

Copper(II) complexes have attracted much attention over the past decade due to their role in biological systems. A great number of copper(II) complexes with various organic ligands have been a subject of intense study because of their interesting properties from many different (chemical, structural and biological) points of view. Copper(II) complexes with bridging acetate ligands have received much attention for their various coordination geometries (Comba *et al.*, 1999; Cox *et al.*, 2000) and potential biological significance (Berners-Price *et al.*, 1987). In addition, some copper(II) complexes also have shown antitumor and antiproliferative effects (Francesca *et al.*, 2005; Nikhil *et al.*, 2001). The furo[3,2-*c*]pyridine and its derivatives represent quinoline isosters, in which the benzene ring is replaced by the furan and pyridine ring can be readily coordinated to metal centers through N-donor atom (Miklovič *et al.*, 2004; Baran *et al.*, 2005). We report here the synthesis and crystal structure of the title compound.

Molecules of the title compound lie on centers of inversion. As illustrated in Fig.1, the two Cu^{II} atoms are bridged by four acetate groups in the *syn-syn* mode, forming a dinuclear structure. The Cu1···Cu1ⁱ [symmetry code: (i) 1 - x, -y, 1 - z] distance is 2.6330 (6) Å, very similar to the values found in other dimeric copper(II) carboxylate complexes (Musie *et al.*, 2006; Su *et al.*, 2006; Moncol *et al.*, 2007). Each Cu^{II} atom displays an approximate square-pyramidal geometry with four acetate O atoms in the basal plane [Cu—O = 1.9562 (19)–1.9731 (19) Å] and the N atom of the benzofuro[3,2-*c*]pyridine ligand (BFP) in the apical position [Cu—N = 2.180 (2) Å]. Atom Cu1 is displaced from the least-squares plane defined by the basal atoms by 0.2064 (3) Å towards the apical N atom. The BFP ligand is almost planar (mean deviation is 0.01 (3) Å), the dihedral angle between the O16/O14/Cu1/O16'/O14'/Cu1' plane and the BFP ring is 24.51 (4)°.

In the crystal structure, the complexes are linked by C—H···O interactions (H···O = 2.41–2.42 Å and C···O = 3.210 (3)-3.364 (3) Å] to form zigzag layers parallel to the *ab* plane.

Experimental

The organic ligand, [1]benzofuro[3,2-*c*]pyridine, was prepared according literature procedures of Bobošík *et al.* (1995) and Bencková & Krutošíková (1995, 1999). To a Cu(CH₃CO₂)₂·H₂O (1.5 mmol) solution in ethanol (5 ml) was added the solution of [1]benzofuro[3,2-*c*]pyridine (3.2 mmol) in ethanol (2 ml). Small blue-green crystals were collected after 2 d. These were filtered off, washed with ethanol and recrystallized from THF.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å and U_{iso} set at $1.2U_{eq}$ (1.5 U_{eq} for methyl) of the parent atom.

Figures

Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (1 - x, -y, 1 - z).

Tetra-µ-acetato-bis[(benzofuro[3,2-c]pyridine)copper(II)]

Crystal data	
$[Cu_2(C_2H_3O_2)_4(C_{11}H_7NO)_2]$	$F_{000} = 1432$
$M_r = 701.60$	$D_{\rm x} = 1.492 {\rm Mg m}^{-3}$
Orthorhombic, Pbca	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 22540 reflections
<i>a</i> = 13.6706 (2) Å	$\theta = 2.9 - 27.0^{\circ}$
b = 8.2336(1) Å	$\mu = 1.42 \text{ mm}^{-1}$
c = 27.7541 (4) Å	T = 298 (2) K
V = 3123.95 (7) Å ³	Block, blue-green
Z = 4	$0.42 \times 0.29 \times 0.17 \text{ mm}$

Data collection

Oxford Diffraction Gemini R CCD diffractometer	3185 independent reflections
Radiation source: fine-focus sealed tube	2574 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
T = 298(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
Rotation method data acquisition using ω and ϕ scans	$\theta_{\min} = 4.1^{\circ}$
Absorption correction: analytical (Clark & Reid, 1995)	$h = -17 \rightarrow 17$
$T_{\min} = 0.542, \ T_{\max} = 0.785$	$k = -10 \rightarrow 10$
65563 measured reflections	$l = -34 \rightarrow 34$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.103$	$w = 1/[\sigma^2(F_o^2) + (0.0323P)^2 + 2.9514P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\text{max}} = 0.002$

3185 reflections

201 parameters

 $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C2	0.70235 (19)	0.2627 (3)	0.40930 (10)	0.0478 (6)
H2A	0.7306	0.2572	0.4397	0.057*
C3	0.7556 (2)	0.3325 (4)	0.37304 (10)	0.0565 (7)
H3A	0.8180	0.3743	0.3781	0.068*
C5	0.6905 (4)	0.4181 (6)	0.20420 (14)	0.1018 (15)
H5A	0.7467	0.4678	0.1925	0.122*
C6	0.6130 (4)	0.3843 (7)	0.17489 (14)	0.1127 (18)
H6A	0.6168	0.4113	0.1424	0.135*
C7	0.5302 (4)	0.3122 (7)	0.19172 (14)	0.1055 (16)
H7A	0.4791	0.2917	0.1705	0.127*
C8	0.5200 (3)	0.2682 (6)	0.23994 (12)	0.0854 (12)
H8A	0.4631	0.2194	0.2512	0.103*
C9	0.5702 (2)	0.2094 (3)	0.36038 (9)	0.0459 (6)
H9A	0.5070	0.1697	0.3564	0.055*
C10	0.7114 (2)	0.3368 (4)	0.32895 (10)	0.0537 (7)
C11	0.6812 (3)	0.3746 (5)	0.25224 (12)	0.0747 (10)
C12	0.5977 (2)	0.2997 (4)	0.27031 (10)	0.0628 (8)
C13	0.6181 (2)	0.2743 (4)	0.32132 (9)	0.0487 (6)
C15	0.6669 (2)	-0.0453 (4)	0.53715 (10)	0.0517 (7)
C17	0.7680 (2)	-0.0657 (5)	0.55807 (13)	0.0756 (10)
H17A	0.7629	-0.0931	0.5916	0.113*
H17B	0.8037	0.0341	0.5547	0.113*
H17C	0.8017	-0.1508	0.5413	0.113*
C19	0.51878 (19)	-0.2616 (3)	0.45388 (9)	0.0432 (6)
C21	0.5319 (3)	-0.4195 (3)	0.42755 (13)	0.0645 (9)
H21A	0.4842	-0.4275	0.4023	0.097*
H21B	0.5235	-0.5082	0.4496	0.097*
H21C	0.5964	-0.4239	0.4139	0.097*
N1	0.61150 (15)	0.2016 (2)	0.40376 (7)	0.0403 (5)
O4	0.75112 (18)	0.3981 (3)	0.28729 (8)	0.0785 (7)
O14	0.66150 (14)	0.0289 (3)	0.49771 (7)	0.0605 (5)
O16	0.59648 (15)	-0.1010 (3)	0.56013 (7)	0.0599 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

O18	0.54378 (14)	-0.1354 (2)	0.43235 (7)	0.0528 (5)
O20	0.48062 (16)	-0.2675 (2)	0.49478 (7)	0.0548 (5)
Cu1	0.53871 (2)	0.07893 (4)	0.463419 (10)	0.03838 (14)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0516 (14)	0.0546 (15)	0.0371 (13)	0.0007 (12)	-0.0041 (11)	-0.0014 (11)
C3	0.0459 (14)	0.073 (2)	0.0507 (16)	-0.0091 (14)	-0.0022 (13)	0.0041 (14)
C5	0.112 (3)	0.143 (4)	0.051 (2)	0.019 (3)	0.017 (2)	0.037 (2)
C6	0.130 (4)	0.169 (5)	0.040 (2)	0.041 (4)	0.001 (2)	0.027 (3)
C7	0.125 (4)	0.148 (5)	0.043 (2)	0.022 (3)	-0.025 (2)	0.007 (3)
C8	0.096 (3)	0.114 (3)	0.046 (2)	0.002 (2)	-0.0189 (18)	0.005 (2)
C9	0.0458 (13)	0.0538 (15)	0.0381 (14)	-0.0032 (12)	-0.0015 (11)	0.0009 (11)
C10	0.0533 (15)	0.0664 (18)	0.0415 (15)	-0.0018 (13)	0.0043 (12)	0.0073 (13)
C11	0.081 (2)	0.099 (3)	0.0434 (17)	0.005 (2)	0.0041 (16)	0.0211 (17)
C12	0.072 (2)	0.078 (2)	0.0377 (15)	0.0072 (17)	-0.0059 (14)	0.0064 (14)
C13	0.0539 (15)	0.0585 (16)	0.0338 (13)	0.0033 (13)	-0.0016 (11)	0.0030 (11)
C15	0.0570 (17)	0.0584 (16)	0.0396 (15)	0.0185 (14)	-0.0043 (12)	-0.0090 (12)
C17	0.0528 (18)	0.106 (3)	0.068 (2)	0.0206 (18)	-0.0119 (16)	-0.004 (2)
C19	0.0480 (13)	0.0389 (13)	0.0428 (15)	0.0084 (11)	0.0091 (11)	-0.0001 (11)
C21	0.092 (2)	0.0427 (16)	0.0593 (19)	0.0002 (14)	0.0242 (17)	-0.0096 (13)
N1	0.0463 (11)	0.0432 (11)	0.0315 (10)	0.0019 (9)	0.0000 (9)	-0.0002 (8)
O4	0.0671 (14)	0.115 (2)	0.0535 (13)	-0.0139 (13)	0.0089 (12)	0.0285 (13)
O14	0.0484 (11)	0.0798 (14)	0.0534 (12)	0.0052 (10)	-0.0035 (9)	0.0102 (11)
O16	0.0558 (12)	0.0810 (15)	0.0428 (11)	0.0132 (10)	-0.0063 (9)	0.0065 (10)
O18	0.0747 (13)	0.0408 (10)	0.0427 (11)	-0.0008 (9)	0.0190 (9)	-0.0060 (8)
O20	0.0849 (14)	0.0396 (10)	0.0399 (10)	-0.0005 (9)	0.0170 (10)	-0.0027 (8)
Cu1	0.0451 (2)	0.0407 (2)	0.02941 (19)	0.00430 (12)	0.00409 (12)	0.00026 (12)

Geometric parameters (Å, °)

C2—N1	1.349 (3)	C12—C13	1.458 (4)
C2—C3	1.369 (4)	C15—O16	1.242 (4)
C2—H2A	0.93	C15—O14	1.256 (3)
C3—C10	1.365 (4)	C15—C17	1.509 (4)
С3—НЗА	0.93	С17—Н17А	0.96
C5—C6	1.364 (7)	С17—Н17В	0.96
C5—C11	1.386 (5)	С17—Н17С	0.96
С5—Н5А	0.93	C19—O18	1.246 (3)
C6—C7	1.360 (7)	C19—O20	1.250 (3)
С6—Н6А	0.93	C19—C21	1.503 (4)
С7—С8	1.393 (6)	C21—H21A	0.96
С7—Н7А	0.93	C21—H21B	0.96
C8—C12	1.381 (5)	C21—H21C	0.96
C8—H8A	0.93	N1—Cu1	2.180 (2)
C9—N1	1.331 (3)	O14—Cu1	1.9731 (19)
C9—C13	1.375 (4)	O16—Cu1 ⁱ	1.969 (2)

С9—Н9А	0.93	O18—Cu1	1.9650 (19)
C10—O4	1.373 (3)	O20—Cu1 ⁱ	1.9562 (19)
C10—C13	1.392 (4)	Cu1—O20 ⁱ	1.9562 (19)
C11—O4	1.377 (4)	Cu1—O16 ⁱ	1.969 (2)
C11—C12	1.391 (5)	Cu1—Cu1 ⁱ	2.6330 (6)
N1—C2—C3	124.3 (2)	C15—C17—H17B	109.5
N1—C2—H2A	117.9	H17A—C17—H17B	109.5
С3—С2—Н2А	117.9	С15—С17—Н17С	109.5
C10—C3—C2	115.7 (3)	H17A—C17—H17C	109.5
С10—С3—НЗА	122.1	H17B—C17—H17C	109.5
С2—С3—НЗА	122.1	O18—C19—O20	125.6 (2)
C6—C5—C11	116.8 (4)	O18—C19—C21	117.1 (2)
С6—С5—Н5А	121.6	O20—C19—C21	117.2 (2)
С11—С5—Н5А	121.6	C19—C21—H21A	109.5
C7—C6—C5	122.0 (4)	C19—C21—H21B	109.5
С7—С6—Н6А	119.0	H21A—C21—H21B	109.5
С5—С6—Н6А	119.0	C19—C21—H21C	109.5
C6—C7—C8	121.8 (4)	H21A—C21—H21C	109.5
С6—С7—Н7А	119.1	H21B—C21—H21C	109.5
С8—С7—Н7А	119.1	C9—N1—C2	118.4 (2)
C12—C8—C7	117.4 (4)	C9—N1—Cu1	121.04 (17)
С12—С8—Н8А	121.3	C2—N1—Cu1	120.44 (17)
С7—С8—Н8А	121.3	C10—O4—C11	105.6 (2)
N1—C9—C13	122.0 (2)	C15—O14—Cu1	124.9 (2)
N1—C9—H9A	119.0	C15—O16—Cu1 ¹	121.51 (18)
С13—С9—Н9А	119.0	C19—O18—Cu1	121.90 (16)
C3—C10—O4	126.1 (3)	C19—O20—Cu1 ⁱ	124.31 (18)
C3—C10—C13	122.2 (3)	O20 ⁱ —Cu1—O18	167.88 (8)
O4—C10—C13	111.7 (2)	O20 ⁱ —Cu1—O16 ⁱ	89.82 (9)
O4—C11—C5	125.4 (4)	O18—Cu1—O16 ⁱ	88.29 (9)
O4—C11—C12	112.2 (3)	O20 ⁱ —Cu1—O14	89.69 (10)
C5—C11—C12	122.4 (4)	O18—Cu1—O14	89.67 (9)
C8—C12—C11	119.7 (3)	O16 ⁱ —Cu1—O14	167.97 (9)
C8—C12—C13	135.5 (3)	O20 ⁱ —Cu1—N1	98.31 (8)
C11—C12—C13	104.9 (3)	O18—Cu1—N1	93.81 (8)
C9—C13—C10	117.4 (2)	O16 ⁱ —Cu1—N1	97.68 (8)
C9—C13—C12	136.9 (3)	O14—Cu1—N1	94.29 (8)
C10—C13—C12	105.7 (3)	O20 ⁱ —Cu1—Cu1 ⁱ	83.12 (6)
O16—C15—O14	125.6 (3)	O18—Cu1—Cu1 ⁱ	84.80 (6)
O16—C15—C17	118.1 (3)	O16 ⁱ —Cu1—Cu1 ⁱ	85.65 (6)
O14—C15—C17	116.3 (3)	O14—Cu1—Cu1 ⁱ	82.35 (6)
С15—С17—Н17А	109.5	N1—Cu1—Cu1 ⁱ	176.36 (6)
N1—C2—C3—C10	-0.5 (5)	C5—C11—O4—C10	-179.8 (4)
C11—C5—C6—C7	0.3 (8)	C12-C11-O4-C10	0.0 (4)
C5—C6—C7—C8	-0.2 (9)	O16-C15-O14-Cu1	1.4 (4)

supplementary materials

C6—C7—C8—C12	-0.4 (8)	C17-C15-O14-Cu1	-177.9 (2)
C2—C3—C10—O4	-178.9 (3)	O14—C15—O16—Cu1 ⁱ	0.0 (4)
C2—C3—C10—C13	0.0 (5)	C17—C15—O16—Cu1 ⁱ	179.2 (2)
C6—C5—C11—O4	179.9 (4)	O20-C19-O18-Cu1	6.5 (4)
C6—C5—C11—C12	0.1 (7)	C21-C19-O18-Cu1	-176.2 (2)
C7—C8—C12—C11	0.8 (6)	O18—C19—O20—Cu1 ⁱ	-5.3 (4)
C7—C8—C12—C13	-179.7 (4)	C21—C19—O20—Cu1 ⁱ	177.4 (2)
O4—C11—C12—C8	179.5 (3)	C19—O18—Cu1—O20 ⁱ	-8.4 (6)
C5—C11—C12—C8	-0.7 (6)	C19—O18—Cu1—O16 ⁱ	-89.6 (2)
O4—C11—C12—C13	-0.1 (4)	C19—O18—Cu1—O14	78.5 (2)
C5-C11-C12-C13	179.6 (4)	C19—O18—Cu1—N1	172.8 (2)
N1—C9—C13—C10	-1.8 (4)	C19—O18—Cu1—Cu1 ⁱ	-3.8 (2)
N1—C9—C13—C12	178.7 (3)	C15—O14—Cu1—O20 ⁱ	81.6 (2)
C3—C10—C13—C9	1.1 (5)	C15—O14—Cu1—O18	-86.3 (2)
O4—C10—C13—C9	-179.9 (3)	C15—O14—Cu1—O16 ⁱ	-6.1 (6)
C3—C10—C13—C12	-179.3 (3)	C15—O14—Cu1—N1	179.9 (2)
O4—C10—C13—C12	-0.2 (4)	C15—O14—Cu1—Cu1 ⁱ	-1.5 (2)
C8—C12—C13—C9	0.1 (7)	C9—N1—Cu1—O20 ⁱ	-115.6 (2)
C11—C12—C13—C9	179.7 (4)	C2—N1—Cu1—O20 ⁱ	68.5 (2)
C8-C12-C13-C10	-179.4 (4)	C9—N1—Cu1—O18	64.1 (2)
C11—C12—C13—C10	0.2 (4)	C2—N1—Cu1—O18	-111.78 (19)
C13—C9—N1—C2	1.4 (4)	C9—N1—Cu1—O16 ⁱ	-24.6 (2)
C13—C9—N1—Cu1	-174.6 (2)	C2—N1—Cu1—O16 ⁱ	159.43 (19)
C3—C2—N1—C9	-0.2 (4)	C9—N1—Cu1—O14	154.1 (2)
C3—C2—N1—Cu1	175.8 (2)	C2—N1—Cu1—O14	-21.8 (2)
C3—C10—O4—C11	179.2 (3)	C9—N1—Cu1—Cu1 ⁱ	131.5 (8)
C13—C10—O4—C11	0.2 (4)	C2-N1-Cu1-Cu1 ⁱ	-44.4 (10)
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.			

